Current Sensor

Model Number

CM2A 300 H00

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- \diamond Closed loop (compensated) current sensor using the Hall Effect.
- \diamond Galvanic separation between primary and secondary.
- \diamond Insulating plastic case recognized according to UL 94-V0.
- \diamond Very good linearity.
- \diamond High accuracy.
- ♦ Very low offset drift over temperature.
- ♦ No insertion loss.
- ♦ Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

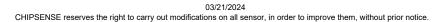
- ♦ AC variable speed and servo motor drives.
- $\label{eq:constraint} \diamond \quad \mbox{Uninterruptible Power Supplies (UPS)}.$
- ♦ Static converters for DC motor drives.
- ♦ Switch Mode Power Supplies (SMPS).
- ♦ Power supplies for welding applications.
- Battery management.
- $\diamond \quad \text{Wind energy inverter.}$
- ♦ Test and detection devices.

Safety

This sensor must be used according to IEC 61800-5-1.

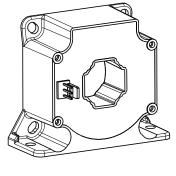
This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!



When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.


Main supply must be able to be disconnected.

Doc Ref.: 1800 000 00452

www.chipsensor.cn

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	Ис	V	± 21
Primary conductor temperature	T _B	°C	100
ESD rating, Human Body Model (HBM)	Vesd	kV	4

X Stresses above these ratings may cause permanent damage.

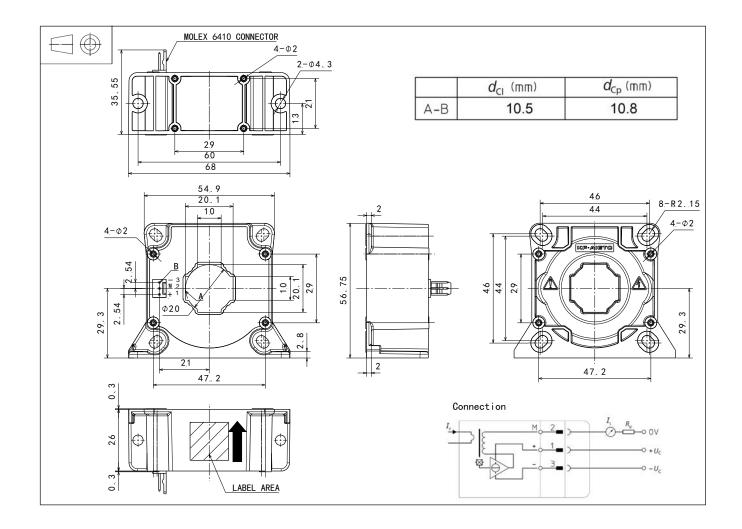
※ Exposure to absolute maximum ratings for extended periods may degrade reliability.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Туре	Max	Comment
Ambient operating temperature	<i>T</i> A	°C	-40		85	
Ambient storge temperature	<i>T</i> s	°C	-40		90	
Mass	т	g		120		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	V _d	kV	3.8	According to IEC 60664-1
Impulse withstand voltage 1.2/50µs	Кw	kV	8.1	According to IEC 60664-1
Clearance (pri sec.)	<i>d</i> cı	mm	10.5	
Creepage distance (pri sec.)	<i>d</i> _{Cp}	mm	10.8	
Plastic case	-	-	UL94-V0	
Comparative traking index	CTI	PLC	3	
Application example			500V	Reinforced insulation, according to IEC
	-	-		61800-5-1, IEC 62109-1CATⅢ,PD2
Application example			1000\/	Basic insulation, according to IEC
	pplication example 1000V		61800-5-1, IEC 62109-1CATⅢ,PD2	


Electrical data

With $T_A = 25^{\circ}$ C, $V_C = \pm 20$ V, $R_M = 10\Omega$, unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	/ _{PN}	А	-300		300	
Primary current, measuring range	/ РМ	А	-500		500	
	RM	Ω	0		35	@±12V, 85℃, ±300A
			0		6	@±12V, 85℃, ±500A
Measuring resistance			0		54	@±15V, 85℃, ±300A
Measuring resistance			0		17	@±15V, 85℃, ±500A
			0		85	@±20V, 85℃, ±300A
			0		36	@±20V, 85℃, ±500A
Secondary nominal rms current	/ _{sn}	mA	-150		150	
Secondary coil resistance	Rs	Ω			27	@ 25 °C
Secondary con resistance					35	@ 85 ℃
Secondary current, measuring range	<i>I</i> s	mA	-250		250	
Number of secondary turns	Ns	-		2000		
Theoretical sensitivity	$\mathcal{G}_{ ext{th}}$	mA/A		0.5		
Supply voltage	٧c	V	±12		±20	@ ±5%
Current consumption	<i>I</i> c	mA		25 + <i>I</i> s		
Zero offset current	ю	mA	-0.2		0.2	
Thermal drift of offset current	<i>К</i> от	mA	-0.3	±0.1	0.3	@ -40℃~85℃
Residual current@/ $_P=0$ after $3 \times I_{PN}$	Юм	mA	-0.1		0.1	
Sensitivity error	\mathcal{E}_{G}	%	-0.2		0.2	Exclusive of I _{OE}
Linearity error 0… <i>I</i> _{PN}	\mathcal{E}_{L}	% of <i>I</i> ⊳ℕ	-0.1		0.1	Exclusive of I _{OE}
Accuracy@ I _{PN}	X	% of $I_{\rm PN}$	-0.3		0.3	Exclusive of I _{OE}
Response time@ 90% of I _{PN}	<i>t</i> r	μs		0.5	1	
Frequency bandwidth (-3dB)	BW	kHz	100			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦	General tolerance Primary hole	±0.3 mm Φ20mm or 20.1mm×10mm
	Transduce vertical fastening	2pc Ф4.3 mm through-hole 2pc M4 metal screws
	Recommended fastening torque	0.9 N•m (±10%)
♦	Connection of secondary Transduce horizontal fastening	Molex 6410 4pc Φ4.3 mm through-hole 4pc M4 metal screws
	Recommended fastening torque	0.9 N•m (±10%)

Remarks

- \diamond I_S and I_P are in the same direction, when I_P flows in the direction of arrow.
- ♦ Temperature of the primary conductor should not exceed 100 $^\circ$ C.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.